RHP PRO

MANUEL D'INSTALLATION

TABLE DES MATIÈRES

1. INTRODUCTION	
1.1. Exigences de sécurité	
1.2. Types d'unité et dimensions	
1.3. Composants et sections de l'unité	
1.3.1. Section filtre-ventilateur	
1.3.2. Section de pompe à chaleur	6
1.3.3. Section recirculation	10
1.3.4. Sections de refroidisseur et de réchauffeur	11
1.3.5. Registres d'air	12
1.3.6. Silencieux	12
1.4. Côtés d'inspection	13
2. TRANSPORT ET STOCKAGE DE L'APPAREIL	14
3. INSTALLATION MÉCANIQUE	16
3.1. Exigences liées à l'emplacement de montage et à la base d'installation	16
3.2. Zone d'inspection	17
3.3. Raccordement des sections	18
3.4. Installation des dispositifs de réchauffage/refroidissement externe	19
3.5. Raccordement d'une évacuation de condensation	21
3.6. Raccordement aux conduites d'air	22
3.7. Unités extérieures	23
4. INSTALLATION ÉLECTRIQUE	20
4.1. Exigences liées aux branchements électriques	26
4.2. Raccordement des composants électriques	28
4.3. Installation du panneau de commande	
4.4. Branchement des câbles et des fils entre les sections	32
4.5. Connexion de l'unité au réseau informatique interne ou à Internet	33
5. FILTRES	
6. MISE EN SERVICE ET INSPECTION DE L'UNITÉ	36
6.1. Panneau de commande C5.1	
6.2. Démarrage de l'unité via un ordinateur	
6.3. Calibrage des filtres propres	40
6.4. Inspection rapide	41
ANNEVE Nº 1 PÉGLAGE DE LA POLIE DE L'ÉCHANGELIP DE CHALELIP DOTATIE	45

1. INTRODUCTION

Le présent manuel d'installation s'adresse aux professionnels, qualifiés pour installer les unités de traitement d'air RHP PRO. Les professionnels qualifiés sont des personnes ayant une expérience professionnelle suffisante et une connaissance des systèmes de ventilation et de leur installation, une connaissance des exigences en matière de sécurité électrique et une capacité à effectuer des travaux sans se mettre en danger ou mettre autrui en danger.

Voir le site Web de KOMFOVENT pour les manuels d'utilisation.

1.1. Exigences de sécurité

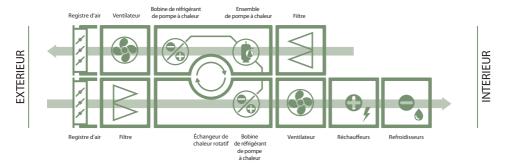
Pour éviter tout malentendu, lisez attentivement le présent manuel d'instructions avant d'installer une unité de traitement de l'air. Seul un professionnel qualifié, conformément aux instructions du fabricant et aux actes juridiques et exigences de sécurité applicables,

Seul un professionnel qualifié, conformément aux instructions du fabricant et aux actes juridiques et exigences de sécurité applicables, peut installer des unités de traitement de l'air. Une unité de traitement de l'air est un appareil électromécanique qui contient des pièces électriques et mobiles. Par conséquent, le non-respect des instructions du présent manuel annulera la garantie du fabricant et peut également causer des dommages directs aux biens ou à la santé humaine.

- Avant de commencer toute tâche, assurez-vous que l'unité est débranchée du secteur.
- Faites preuve de prudence lorsque vous effectuez des travaux à proximité d'appareils de chauffage internes ou externes, car leurs surfaces peuvent être chaudes.
- Ne branchez pas l'appareil sur le secteur si tous les éléments externes ne sont pas complètement installés.
- Ne branchez pas l'appareil sur le secteur en cas de dommages visibles survenus pendant le transport.
- Ne laissez pas d'objets étrangers ni d'outils à l'intérieur de l'appareil.
- Il est interdit de faire fonctionner les unités de traitement de l'air dans des zones à atmosphère potentiellement explosive.
- Utilisez des équipements de sécurité appropriés (gants, lunettes) lors des travaux d'installation ou de réparation.
- Les systèmes de pompe à chaleur sont remplis de réfrigérant (gaz F), par conséquent, seuls des spécialistes qualifiés en systèmes de réfrigération ou un représentant de « Komfovent » peuvent effectuer des travaux mécaniques/électriques sur une pompe à chaleur.
- La température du réfrigérant qui s'évapore est très basse et provoque de graves gelures au contact de la peau, par conséquent, utilisez l'équipement de protection personnelle approprié (gants, lunettes).

Ce symbole indique que ce produit ne peut pas être éliminé avec vos déchets ménagers, comme le stipulent la directive DEEE (2002/96/CE) et les lois nationales. Ce produit doit être remis à un point de collecte désigné ou à un site de collecte a butorisé pour le recyclage des déchets d'équipements électriques et électroniques (EEE). Une manipulation incorrecte de ce type de déchets pourrait avoir un impact négatif sur l'environnement et la santé humaine en raison des substances potentiellement dangereuses qui sont généralement associées aux équipements électriques et delectroniques. Dans le même temps, votre coopération à l'elimination correcte de ce produit contribuera à l'utilisation efficace des ressources naturelles. Pour plus d'informations sur les endroits où vous pouvez déposer vos déchets d'équipements en vue de leur recyclage, contactez les autorités de votre ville, les organismes de gestion des déchets, le programme DEEE approuvé ou votre service d'élimination des déchets ménagers.

1.2. Types d'unité et dimensions


Une unité de traitement de l'air est un dispositif conçu pour assurer une bonne ventilation des locaux. Une unité de traitement de l'air élimine l'air intérieur contenant du dioxyde de carbone, divers allergènes ou de la poussière, tout en le remplaçant par de l'air frais filtré provenant de l'extérieur. Comme l'air extérieur est généralement plus froid ou plus chaud que l'air intérieur, un récupérateur intégré (échangeur de chaleur) collecte l'énergie thermique de l'air intérieur et en transfère la majeure partie à l'air d'alimentation. Lorsqu'un récupérateur n'est pas capable d'atteindre une température souhaitée, des réchauffeurs ou des refroidisseurs supplémentaires peuvent être activés.

Les échangeurs de chaleur et les réchauffeurs (ou refroidisseurs) sont conçus pour compenser les pertes de chaleur/refroidissement pendant la ventilation, c'est pourquoi nous ne recommandons pas d'utiliser cet appareil comme source principale de chauffage/refroidissement. L'appareil peut ne pas atteindre une température d'alimentation en air définie par l'utilisateur lorsque la température réelle des locaux diffère considérablement de la température de consigne, car cela entre de l'échangeur de chaleur.

RHP – Unités traitement de l'air avec échangeur de chaleur rotatif et pompe à chaleur intégrée. La roue rotative (rotatif) d'un échangeur de chaleur rotatif collecte la chaleur ou la fraicheur de l'air intérieur et les transfère au débit d'air frais. Il est possible de modifier la capacité de chaleur/fraîcheur récupérée en ajustant la vitesse du rotatif. Lorsque la récupération de chaleur n'est pas utile, la route cesse de tourner. Si un échangeur de chaleur seul n'est pas capable d'atteindre une température souhaitée, une pompe à chaleur intégrée est activée. Si la capacité de chauffage/refroidissement est toujours trop faible, des chauffages ou des refroidisseurs supplémentaires peuvent être activés. I

Les unités RHP PRO sont disponibles en plusieurs tailles. Chaque taille est adaptée à une plage de volume spécifique :

Taille de l'unité	Volume d'air maximum, m³/h
10	3000
20	4000
30	6000
40	8000
50	11000
60	15000
70	18000
80	22000
90	25000

Le volume d'air maximum peut être limité en fonction de la commande, par exemple, si des ventilateurs de faible puissance sont utilisés ou si un volume d'air plus important n'est pas requis par les exigences du projet. Pour connaître le volume d'air maximum exact, consultez l'imprimé des données techniques de l'unité concernée.

1.3. Composants et sections de l'unité

Les unités de traitement de l'air RHP PRO sont assemblées à partir de sections distinctes. En fonction de la commande et de la taille de l'unité, les sections peuvent être préassemblées en usine, ou transportées séparément. Le type de chaque section est identifié grâce à une étiquette apposée à la porte de la section. Voici les principales sections de l'unité de traitement de l'air. Pour l'équipement et le nombre de sections dans chaque unité, voir l'imprimé des données techniques de l'unité spécifique.

Dépend de la configuration.

1.3.1. Section filtre-ventilateur

Les unités de traitement de l'air sont équipées de deux sections filtre-ventilateur. La contamination du filtre est mesurée et le ventilateur est commandé par une carte de circuit électronique installée dans la même section.

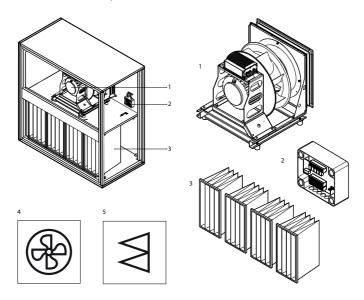


Fig. 1. Section filtre-ventilateur

1 – Ensemble de ventilateurs avec cadre d'installation 2 – carte de commande de ventilateur (C5_VM),
3 – Filtres à manches, 4 – Étiquette de la section ventilateur, 5 – Étiquette de la section filtre

1.3.2. Section de pompe à chaleur

Les centrales de traitement de l'air sont équipées d'une pompe à chaleur intégrée fonctionnant à la fois en mode chauffage et en mode refroidissement. Tous les composants de la pompe à chaleur et un échangeur de chaleur rotatif sont installés dans une section de la pompe à chaleur. Cette section est également équipée d'un boîtier électronique de contrôle et d'automatisation de la pompe à chaleur auquel sont raccordés un grand nombre des principaux composants électriques (voir le chapitre « Raccordement des composants électriques »).

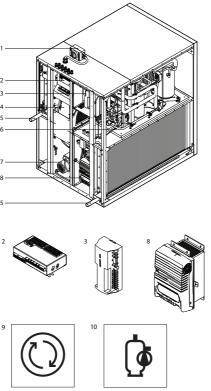
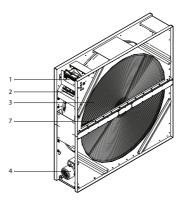



Fig. 2. Section de pompe à chaleur

1 – interrupteur d'alimentation principal, 2 – carte mère de contrôleur C5,
3 – composants électroniques de commande de pompe à chaleur, 4 – récupérateur rotatif,
5 – tuyaux d'évacuation des condensats, 6 – ensemble de pompe à chaleur, 7 – moteur du rotor,
8 – comvertisseur de fréquence pour compresseur de pompe à chaleur,
9 – étiquette de marquage du récupérateur rotatif, 10 – étiquette de section de pompe à chaleur

Le tambour rotatif d'un échangeur de chaleur rotatif est entraîné par courroie par un moteur électrique avec une boîte de vitesses. Les joints de balai sont installés à la circonférence du tambour rotatif et entre les flux d'air pour empêcher les différents flux d'air de se mélanger.

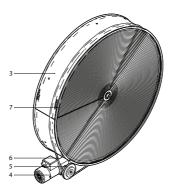


Fig. 3. Ensemble d'échangeur de chaleur rotatif

1 – Carte mère de contrôleur C5, 2 – disjoncteurs automatiques, 3 – roue rotative,

4 – moteur équipé d'une boîte de vitesses, 5 – poulie de de courroie de rotor, 6 – courroie de rotor, 7 – balais d'étanchéité

Un ensemble de pompe à chaleur se compose d'un système de tuyauterie contenant du réfrigérant, d'un compresseur, de deux radiateurs (condenseur et évaporateur) et de composants électroniques de commande séparés. Si la vitesse de l'air dans la centrale de traitement de l'air est élevée (> 2 m/s), des éliminateurs de gouttes en option sont installés près du condenseur et/ou de l'évaporateur, ce qui empêche le condensat de pénétrer dans d'autres parties de l'unité ou dans les conduits d'air.

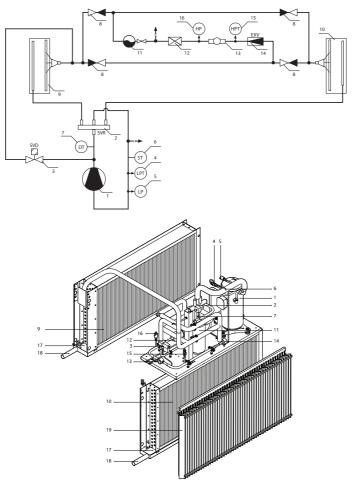


Fig. 4. Schéma du circuit hydraulique et composants de la pompe à chaleur

1 - Compresseur, 2 - Vanne 4 voies (SVR), 3 - Vanne de dégivrage (SVD), 4 - Transmetteur basse pression (LPT),

5 - Pressostat basse pression (LP), 6 - Capteur de température de gaz d'aspiration (ST),

7 - Capteur de température de gaz de refoulement (DT), 8 - Clapet antiretour,

9 - Bobine de réfrigérant positionnée dans le débit d'air soufflé, 11 - récepteur de liquide, 12 - Filtre-dessiccateur,

13 - Regard, 14 - elektroninis išsiplétimo vožtuvas (EXV), 15 - Transmetteur haute pression (HPT),

16 - Pressostat haute pression (HP), 17 - bacs de condensats, 18 - tuyaux d'évacuation des condensats,

19 - éliminateur de gouttes

Selon la taille de l'unité, la pompe à chaleur peut contenir jusqu'à 3 circuits indépendants, chacun composé des mêmes éléments (compresseur, conduites, vannes et capteurs). Dans ces unités, les serpentins réfrigérants (condenseur et évaporateur) d'une pompe à chaleur se composent également de plusieurs niveaux, indépendants les uns des autres, mais la quantité de réfrigérant dans les différents circuits est différente. Le modèle de pompe à chaleur, le nombre de circuits et la quantité exacte de réfrigérant sont indiqués sur une étiquette à l'intérieur de l'unité.

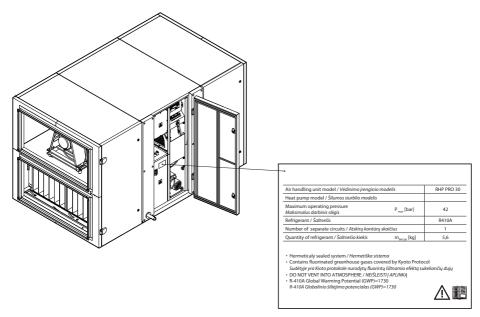


Fig. 5. Exemple d'étiquette d'information de la pompe à chaleur

La pompe à chaleur est activée automatiquement lorsqu'un échangeur de chaleur rotatif ne parvient pas à atteindre la température souhaitée ; elle s'arrête dès que la température souhaitée est atteinte. Le démarrage et l'arrêt fréquents d'une pompe à chaleur peuvent endommager le compresseur. Par conséquent, lorsque la demande de chauffage/refroidissement est faible, la pompe à chaleur continue de fonctionner pendant un certain temps après que la température de consigne a été atteinte. Dans ce cas, l'air soufflé peut être légèrement plus chaud (en mode chauffage) ou plus froid (en mode refroi-dissement) que souhaité; cependant, le mode de contrôle de la température extraite aidera à réduire ces fluctuations de température (voir « Mode d'emploi pour l'utilisateur »).

Un certain débit d'air est nécessaire pour assurer le fonctionnement correct d'une pompe à chaleur, c'est-à-dire pour assurer un échange thermique efficace et maintenir la pression du réfrigérant dans les limites. Lorsque le flux d'air est réduit, la puissance de la pompe à chaleur est limitée, et lorsque le flux d'air chute en dessous de la limite minimale, le compresseur s'arrête temporairement. Le fonctionnement de la pompe à chaleur ne reprend que lorsque le flux d'air augmente. Il est donc important de tenir compte de ces volumes d'air lors de la conception d'un système de ventilation ou du choix de fonctions supplémentaires.

Dimensions du modèle RHP PRO	Flux d'air minimum et hystérésis pour démarrer la pompe à chaleur, m³/h	Flux d'air minimum et hystérésis pour démarrer la pompe à chaleur (Micrologiciel C5 version 2.530 ou ultérieure), m³/h	Flux d'air minimum pour permettre la pleine capacité de la pompe à chaleur, m³/h
10	900 ± 30	300 ± 30	1200
20	1800 ± 60	600 ± 60	2400
30	2700 ± 90	900 ± 90	3600
40	3600 ± 120	1200 ± 120	4800
50	5000 ± 175	1600 ± 175	7000
60	7000 ± 225	2250 ± 225	9000
70	9000 ± 300	3000 ± 300	12000
80	10000 ± 350	3200 ± 350	14000
90	13000 ± 400	3400 ± 400	16000

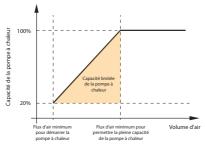
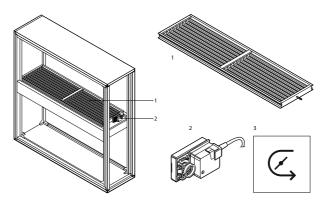


Fig. 6. Limitation de la capacité de la pompe à chaleur en fonction du flux d'air

La pompe à chaleur ne fonctionne pas lorsque la température de l'air extérieur se situe entre 15°C et 20°C, car, dans ce cas, l'échangeur de chaleur rotatif est généralement capable d'atteindre la température de l'air souhaitée.

Si la demande de chauffage/refroidissement augmente lorsque la pompe à chaleur est arrêtée, des appareils de chauf-fage/refroidissement supplémentaires sont activés¹.

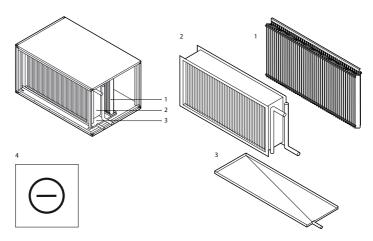


Lorsque la pompe à chaleur fonctionne, il est recommandé de faire fonctionner les centrales de traite-ment de l'air avec une différence de volume d'air aussi faible que possible entre les débits d'air soufflé et extrait. En cas de déséquilibres de débit élevés (> 20 %), la capacité et l'efficacité de la pompe à chaleur diminuent, le compresseur fonctionne donc à une limite critique de pression du réfrigérant. Il en résulte une réduction de la durée de vie et une augmentation de la probabilité de défaillance.

Pendant le fonctionnement en hiver, lorsque la pompe à chaleur est en mode chauffage, le condensat sur l'évaporateur commence à geler et forme du givre. Les dépôts de glace importants bloquent le flux d'air dans l'évaporateur et peuvent endommager la pompe à chaleur. L'évaporateur est donc automatiquement dégivré pendant l'utilisation hivernale. Lorsque la température extérieure descend en dessous de zéro, le système d'automatisation de la pompe à chaleur commence à surveiller constamment la différence de pression en amont et en aval de l'échangeur de chaleur de l'évaporateur. Lorsque le condensat s'accumule dans les plaques de l'échangeur de chaleur et que la glace commence à se former, la pression augmente et des actions de dégivrage sont lancées. Pendant le cycle de dégivrage, une partie du gaz ré-frigérant chaud est dirigée du compresseur vers l'évaporateur pour faire fondre les cristaux de glace en formation, ce qui entraîne une baisse temporaire de la température de l'air soufflé. Des chauffages électriques ou auxiliaires intégrés sont mis en marche pour compenser ce changement. Dès que le gel fond et que la pression diminue, toute la puissance de la pompe à chaleur est redirigée vers le processus de chauffage.

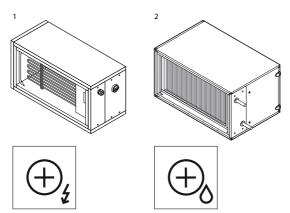
1.3.3. Section recirculation

La section recirculation est conçue pour mélanger l'air extrait et d'alimentation pour le chauffage et le rafraîchissement, en réduisant la consommation d'énergie des réchauffeurs/refroidisseur.


Fig. 7. Section recirculation

1 – registre de mélange d'air, 2 – actionneur de registre, 3 – étiquette de la section recirculation

Dépend de la configuration.


1.3.4. Sections de refroidisseur et de réchauffeur

La section des refroidisseurs est équipée de refroidisseurs à eau ou à évaporation directe (DX) ainsi que d'échangeurs de chaleur combinés chauffage/refroidissement. L'air de refroidissement provoque de la condensation, c'est pourquoi un bac de condensation est installé sous l'échangeur de chaleur. Si la vitesse de l'air dans l'unité de traitement de l'air est élevée (> 2 m/s), un éliminateur de gouttes est installé en option, qui empêche la condensation de pénétrer dans d'autres parties de l'unité ou dans les conduites d'air.

Fig. 8. Section de refroidisseur 1 – éliminateur de gouttes, 2 – bobine d'eau/réfrigérant 3 – bac de condensation, 4 – étiquette de la section de refroidisseur

En fonction de la commande, des réchauffeurs électriques ou à eau peuvent être sélectionnés. Une section de réchauffeur électrique est équipée de composants électroniques de commande du réchauffeur et du disjoncteur principal (voir le chapitre « Exigences en matière de raccordement électrique »). Un réchauffeur à eau est équipé d'un capteur de température de l'eau de retour, qui protège l'échangeur de chaleur contre le gel. La procédure d'installation du capteur est décrite au chapitre « Installation des dispositifs de chauffage/refroidissement externes ».

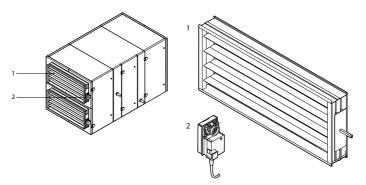


Fig. 9. Section du réchauffeur 1 – section du réchauffeur électrique et étiquette, 2 – section du réchauffeur à eau et étiquette

1.3.5. Registres d'air

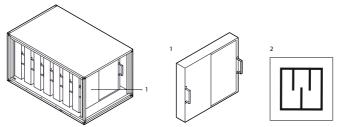

Les registres d'air sont montés à l'extérieur de l'appareil et sont fixés par des vis autotaraudeuses. Les registres d'air sont conçus pour isoler l'unité et la protéger contre les débits d'air et les courants d'air lorsque l'unité est arrêtée. Les lamelles de registre sont fermées/ouvertes par un actionneur électrique (24 V CA), dont la puissance et le couple sont sélectionnés en fonction de la taille de la lamelle. Des conduites d'air rectangulaires peuvent être reliées directement aux registres (voir le chapitre « Raccordement des conduites d'air »). Pour une installation à l'extérieur, les lamelles d'air avec actionneur électrique doivent être protégées contre les influences de l'environnement par des couvertures spéciales ou d'autres structures.

Fig. 10. Registre de fermeture d'air 1 – registre d'air, 2 – actionneur électrique de registre

1.3.6. Silencieux

Les sections de suppression du bruit sont destinées à réduire le bruit généré par une unité de traitement de l'air et les débits d'air. Selon le type d'unité et l'emplacement d'une section de silencieux, les sections de suppression peuvent être séparées pour chaque débit d'air (par exemple, pour l'air de soufflage uniquement) ou doubles, destinées aux deux débits d'air. La section du silencieux est équipée de cloisons d'absorption du bruit qui peuvent être retirées et nettoyées pendant les travaux d'inspection. La section du silencieux peut également être équipée d'un filtre compact en option.

Fig. 11. Section de suppression du bruit 1 – cloisons d'absorption de bruit amovibles, 2 – étiquette de la section du silencieux

1.4. Côtés d'inspection

En fonction de la position d'installation et du raccordement des conduites d'air, les unités de traitement de l'air RHP PRO proposent quatre côté d'inspection. Le côté d'inspection est déterminé par la position de la conduite d'air de soufflage (SUP):

Conduite d'air L1 pour l'air de soufflage raccordée du côté inférieur gauche de l'unité

Conduite d'air L2 pour l'air de soufflage raccordée du côté supérieur gauche de l'unité

Conduite d'air R1 pour l'air de soufflage raccordée du côté inférieur droit de l'unité

Conduite d'air R2 pour l'air de soufflage raccordée du côté supérieur droit de l'unité

2. TRANSPORT ET STOCKAGE DE L'APPAREIL

Les unités doivent être transportées et stockées dans leur emballage d'origine. Pendant le transport, les unités doivent être correctement fixées et protégées contre d'éventuels dommages mécaniques, la pluie ou la neige. Seul un employé qualifié pour conduire un chariot élévateur à fourche ou une grue et connaissant les principes de levage des cargaisons et les exigences de sécurité, doit effectuer les opérations de déchargement ou de levage. Lorsqu'un chariot élévateur à fourche est utilisé pour soulever ou transporter l'appareil, les fourches doivent être suffisamment longues pour éviter que l'appareil ne bascule ou que sa partie inférieure ne soit endommagée mécaniquement.

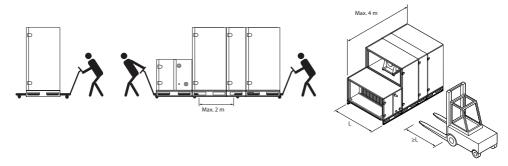


Fig. 12. Transport de l'unité à l'aide d'un chariot élévateur à fourche ou d'un chariot

Les différentes sections de l'unité doivent être soulevées à l'aide d'un cadre d'installation. Les tuyaux doivent être insérés à travers le cadre de montage dans les ouvertures prévues à cet effet et des cordes ou des courroies de levage doivent être fixées. Il faut s'assurer que les courroies ne se débrancheront pas ou que les tuyaux ne seront pas extraits du cadre lors du levage.

Fig. 13. Levage des sections individuelles¹

Les moyens de levage (tuyaux, courroies, cordes, traverses) ne sont pas fournis.

Les unités RHP PRO 10-70 entièrement assemblées peuvent être soulevées par une grue uniquement si aucune section supplémentaire n'est connectée (par exemple : réchauffeurs, refroidisseurs, silencieux). Les unités de tailles différentes ou les unités avec des sections supplémentaires connectées peuvent être levées uniquement lorsqu'elles sont fixées à un cadre de montage renforcé (commandé séparément).

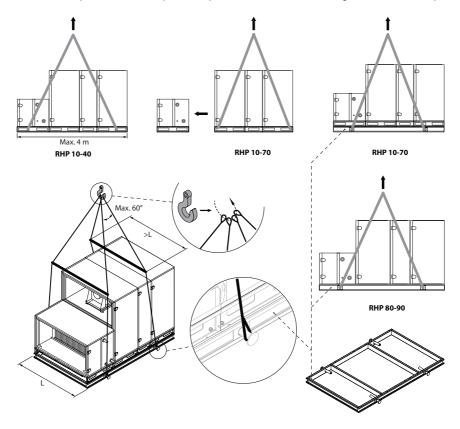


Fig. 14. Levage d'une centrale de traitement de l'air entièrement assemblée¹

- Les unités de traitement de l'air sont lourdes, c'est pourquoi il faut faire attention lors des opérations de levage, de transport ou de déplacement. Utilisez un équipement de protection individuelle, ne vous tenez pas sous une unité suspendue ou une partie de celle-ci.
- Seul un employé qualifié pour conduire un chariot élévateur à fourche ou une grue et connaissant les principes de levage des cargaisons et les exigences de sécurité, doit effectuer les opérations de déchargement ou de levage.
- Il faut s'assurer que le boîtier n'est pas écrasé ou autrement endommagé par des courroies ou des cordes pendant les opérations de levage. Il est recommandé d'utiliser des structures de support spéciales (traverses).
- Lors du levage de l'unité ou d'une partie de celle-ci, il convient de noter que leur centre de gravité peut être différent du centre géométrique de la charge.
- Le montage par empilage d'unités de traitement de l'air séparées n'est pas autorisé, sauf si sa conception de construction est prévue pour une telle installation.
- Avant leur installation, les centrales de traitement de l'air doivent être stockées dans des locaux propres et secs, dans leur emballage d'origine. Si l'unité est installée, mais pas encore utilisée, toutes les ouvertures de raccordement doivent être obturées hermétiquement et l'unité doit être en outre protégée contre les influences de l'environnement (poussière, pluie, froid, etc.).

Les moyens de levage (tuyaux, courroies, cordes, traverses) ne sont pas fournis.

3. INSTALLATION MÉCANIQUE

3.1. Exigences liées à l'emplacement de montage et à la base d'installation

Les unités de traitement d'air RHP PRO sont conçues pour la ventilation de locaux commerciaux ou industriels de moyenne ou grande taille (par exemple, magasins, bureaux, hôtels, etc.) où la température et l'humidité de l'air sont conformes aux normes. Ces unités ne sont pas destinées à transporter des particules solides dans les débits d'air. Les unités de traitement de l'air à équipement standard sont destinées à être installées à l'intérieur; et avec des accessoires supplémentaires, ces unités peuvent être montées à l'extérieur. Les unités de traitement de l'air sont conçues pour des températures ambiantes de -30 °C à +40 °C.

- Les unités RHP PRO ne sont pas conçues pour fonctionner dans des zones à atmosphère potentiellement explosive.
 Les unités de traitement de l'air ne sont pas conçues pour la ventilation et la déshumidification de zones humides (piscines, saunas, lave-autos, etc.).
- Si l'unité de traitement de l'air est installée dans une pièce où le niveau d'humidité est élevé, de la condensation peut se former sur les parois de l'unité lorsque la température extérieure est basse.

Une unité de traitement de l'air doit être montée sur une base relativement grande et robuste, en fonction du poids de l'unité et conformément aux réglementations en matière de construction. La base doit être en béton armé ou en structures métalliques. Si l'unité n'est pas équipée de pieds réglables en hauteur, elle doit être installée sur une base plane. Des joints amortisseurs de vibrations doivent être installés entre l'unité et la base d'installation. Si l'unité n'est pas équipée d'un cadre d'installation ou de pieds réglables en hauteur, elle doit être fixée à la base à l'aide de cornières métalliques et de joints amortisseurs de vibrations en caoutchouc. En cas d'installation à l'extérieur, les unités de traitement de l'air doivent également être fixées à la base. Lors de l'installation, les sections de l'unité doivent être mises à niveau par rapport à l'horizon: les écarts ne doivent pas dépasser 0.3 mm pour 1 m dans le sens longitudinal et 0.5 mm pour 1 m dans le sens transversal.

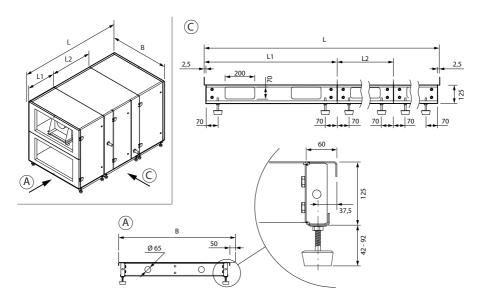


Fig. 15. Cadre d'installation équipé de pieds réglables

Comme les grandes sections de l'unité peuvent être difficiles à raccorder correctement sur place et que la porte de l'appareil peut se déformer, il est nécessaire d'ajuster les charnières. Desserrez la vis de verrouillage pour lever/abaisser la porte de quelques millimètres.

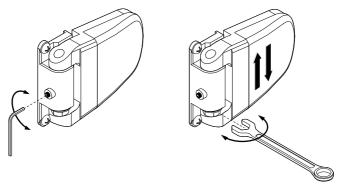


Fig. 16. Réglage des charnières

3.2. Zone d'inspection

Selon son type, une centrale de traitement de l'air peut être installée à l'intérieur ou à l'extérieur. Lors du choix d'un lieu d'installation ou de montage, il faut prévoir un espace d'accès suffisant et conforme aux normes de sécurité pour les opérations de réparation et de maintenance. L'unité doit être installée de manière à permettre le démontage partiel ou complet et la dépose des ensembles hors des sections, si nécessaire (par exemple, en cas de réparations complexes).

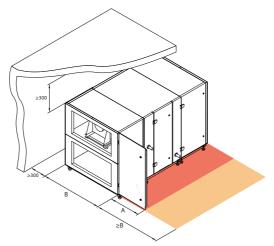


Fig. 17. Zone d'inspection de l'unité

La zone de maintenance minimum A définit une zone qui doit être exempte de tout dispositif, d'équipement, de cloison, de structure ou de mobilier, autonome ou fixe. Cette zone est suffisante pour effectuer les travaux d'entretien et de remplacement des filtres. Pour la réparation et le remplacement de composants (par exemple, la dépose d'échangeurs thermiques rotatifs), une zone d'accès égale à la largeur de l'unité B doit être assurée devant l'appareil. De plus, pour faciliter l'installation et la maintenance, il est recommandé de laisser au moins 300 mm derrière et au-dessus de l'unité lorsque cela est possible.

Taille de l'unité	A, mm	B, mm
10	670	1000
20	800	1150
30	800	1300
40	800	1500
50	940	1700
60	940	1900
70	940	2100
80	940	2300
90	940	2610

Les mesures indiquées dans le tableau sont approximatives. Pour les mesures exactes des unités, voir l'imprimé des données techniques.

Lors du choix de l'emplacement d'installation ou de montage, n'oubliez pas que des travaux de maintenance préventive doivent être effectués au moins deux fois par an, voire plus souvent, et qu'il faut donc prévoir un accès sûr et facile à l'unité.

3.3. Raccordement des sections

Avant de fixer les sections d'une unité de traitement de l'air, vous devez raccorder les câbles et fils de connexion des sections (voir chapitre « Installation électrique »).

- Si, pour une raison quelconque, des sections de l'unité ont été démontées, avant l'installation à son emplacement final, l'étanchéité de l'unité peut différer des données fournies dans la documentation, sauf si l'unité est assemblée par du personnel formé par le fabricant.
- · Des joints d'étanchéité doivent être installés entre les sections (fournies avec l'unité).
- Pour une installation à l'extérieur, les joints entre les sections doivent être en outre scellés avec du silicone ou un autre produit d'étanchéité.
- Il est interdit de percer et d'utiliser des vis autotaraudeuses sur le boîtier de l'unité (lorsque cela n'est pas prévu par la construction), car les câbles ou les tubes à l'intérieur du boîtier pourraient être endommagés.

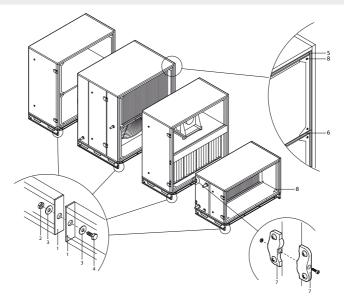


Fig. 18. Raccordement externe et scellement des sections
1 – Cadre d'installation, 2 – écrou M10, 3 – orndelle, 4 – vi M10, 5 – joint adhésif,
6 – joint sur une étagère entre chacun des débits d'air, 7 – éléments d'étanchéité externe, 8 – supports internes de serrage

En fonction de la taille de l'unité et de l'utilisation des sections de celle-ci, des sections séparées peuvent être interconnectées avec des éléments d'étanchéité externe ou des supports de serrage internes, en utilisant les vis. Des joints d'étanchéité doivent être fixés sur les joints avant l'assemblage des sections (forunies avec l'unité). Des joints sont installés sur tout le périmètre de la section ainsi que sur une étagère qui sépare les différents débits d'air. Les vis doivent être serrées de manière à ce que le joint soit entièrement comprimé et que l'écart entre les sections ne dépasse pas 2-3 mm. Si l'unité est commandée avec un cadre d'installation, les sections supplémentaires doivent être serrées à travers les trous prévus à cet effet dans le cadre d'installation (insérer d'abord les vis de connexion de la section interne, avant de serrer le cadre d'installation).

Les sections sont serrées dans les coins intérieurs ainsi qu'au milleu de l'étagère séparant les différents débits d'air. Si certaines des ouvertures de connexion à proximité des ventilateurs sont difficiles à atteindre, le registre de fermeture d'air peut être démonté ou des éléments de serrage externes peuvent être utilisés pour un serrage plus facile des sections.

Sur les appareils RHP 80 et les unités plus grandes, vérifiez et, si nécessaire, ajustez la position de la roue rotative par rapport au logement de la section avant de connecter toutes les sections (voir annexe n° 1).

3.4. Installation des dispositifs de réchauffage/refroidissement externe

En fonction de leur équipement, les unités de traitement de l'air RHP PRO peuvent fonctionner avec différents dispositifs de chauffage ou de refroidissement. Les réchauffeurs/refroidisseurs sont généralement installés dans des sections distinctes qui sont reliées à l'extrémité de l'unité (dans le flux d'air de soufflage). Pour les unités de traitement de l'air avec des côtés d'inspection R1 ou L1, les sections de chauffage/refroidissement sont montées sur un cadre d'installation et reliées à la partie inférieure de l'unité. Pour les unités avec côtés d'inspection R2 et L2, les sections de chauffage/refroidissement sont montées sur la partie supérieure de l'unité et doivent être en plus fixées ou suspendues (accessoires de fixation/suspension non fournis). Les sections d'échangeur de chaleur sont montées sur l'unité de traitement de l'air et scellées de la même manière que les autres sections (voir chapitre « Raccordement des sections »).

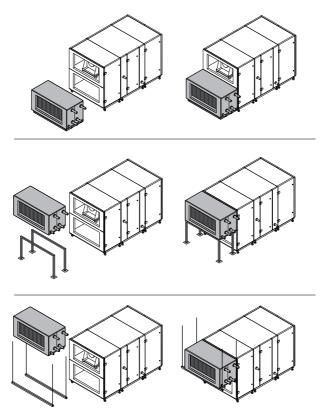


Fig. 19. Exemples d'installations de section chauffage/refroidissement

Les tuyaux du chauffe-eau et du refroidisseur sont raccordés à une unité de mélange d'eau (PPU) qui fournit de l'eau chaude/froide à partir du système d'eau du bâtiment. Les échangeurs de chaleur des refroidisseurs/réchauffeurs à évaporation directe (DX) sont remplis en usine avec de l'azote gazeux. Avant de raccorder un échangeur de chaleur à un système de réfrigération, l'azote gazeux est évacué par une vanne qui est ensuite coupée et les connexions de l'échangeur de chaleur sont soudées à une canalisation. Les serpentins des refroidisseurs à eau ou DX sont équipés de bacs de condensation auxquels il faut raccorder un siphon et une tuyauterie d'évacuation (voir le chapitre « Raccordement d'une évacuation de condensation »).

Les sections de chauffage électrique nécessitent une alimentation électrique séparée.

Tous les raccordements à la tuyauterie et au réseau du système de chauffage ou de refroidissement doivent être effectués par un spécialiste qualifié.

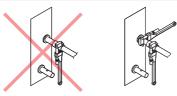


Fig. 20. Connexion des manchons

Lorsque vous raccordez les manchons des chauffe-eau/refroidisseurs, utilisez deux clés à pipe pour fixer les manchons, sinon ils seront endommagés. Si l'eau est utilisée dans le réchauffeur, pour la protection contre le gel, la sonde de température de l'eau de retour (B5) doit être installée sur le tuyau d'eau de retour aussi près que possible du réchauffeur. Elle peut être vissée dans une ouverture spéciale ou fixée avec une sangle sur le tuyau. Fixez le capteur de manière à ce que sa partie métallique soit en bon contact avec une surface du tuyau. Le capteur doit être isolé thermiquement afin que la température ambiante ne fausse pas les mesures de la température de l'eau.

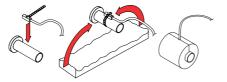


Fig. 21. Installation d'une sonde de température de retour d'eau en surface²

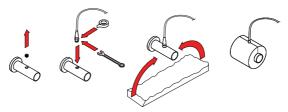
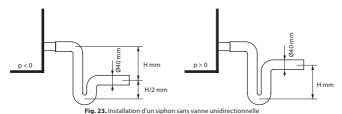


Fig. 22. Installation d'une sonde de température de l'eau de retour avec filetage³

Lors que la température de l'unité de traitement de l'air est inférieure à 0 °C, il est nécessaire d'utiliser un mélange eau-gly-col comme caloporteur ou de maintenir une température de l'eau de retour d'au moins 25 °C.

Le pack^a tuyauterie doit comprendre une pompe de circulation, qui fait circuler le fluide de chauffage/refroidissement à travers le serpentin (circuit plus petit) et une vanne de mélange à trois voies avec actionneur modulé. En cas d'utilisation d'une vanne à deux voies, il faut en outre installer des clapets antiretour pour assurer une circulation continue dans le petit circuit. Le PPU doit être installé le plus près possible du serpentin d'eau.

Selon la commande


Selon la commande.

Selon la commande

⁴ Il est recommandé d'utiliser un PPU fabriqué par Komfovent.

3.5. Raccordement d'une évacuation de condensation

Pendant le fonctionnement de la pompe à chaleur, l'humidité de l'air se condense et s'accumule dans des bacs à condensats spécialement conçus à cet effet. La condensation est évacuée des bacs de condensation par des tuyaux d'évacuation, c'est pourquoi un système d'évacuation de la condensation doit être raccordé. Les tuyaux de drainage doivent avoir un diamètre d'au moins 40 mm, être installés en pente, sans sections ni boucles rétrécies empêchant l'eau de s'écouler. Si ces tuyaux d'évacuation sont installés à l'extérieur ou dans des locaux non chauffés, ils doivent être suffisamment isolés ou équipés d'un câble chauffant pour empêcher l'eau de geler en hiver. La tuyauterie d'évacuation est raccordée à l'unité au moyen d'un siphon. En raison de la pression d'air positive ou négative dans l'unité de traitement de l'air, l'eau ne peut pas s'écouler d'elle-même du bac de collecte de la condensation. Il est donc nécessaire de raccorder au tuyau d'évacuation un siphon de hauteur appropriée ou un siphon avec une vanne unidirectionnelle.

La hauteur H d'un siphon sans vanne unidirectionnelle est choisie en fonction de la pression statique p à l'intérieur de l'unité de traitement de l'air :

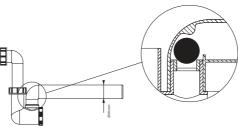


Fig. 24. Exemple d'un siphon avec vanne unidirectionnelle

Tout système d'évacuation ne peut être directement raccordé au système commun d'évacuation des eaux usées afin de protéger l'air de soufflage contre la contamination par les bactéries et les odeurs. La condensation du système d'évacuation de l'unité de traitement de l'air doit être collectée dans un récipient séparé ou doit être conduite vers une grille d'égout sans aucun contact direct : ne pas raccorder l'évacuation directement au tuyau d'égout et ne pas l'immerger dans l'eau. Le lieu de collecte de la condensation doit être facilement accessible pour le nettoyage et la désinfection.

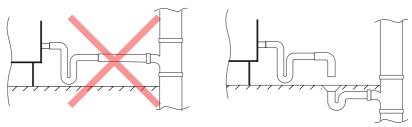


Fig. 25. Raccordement de l'évacuation de la condensation au réseau d'égouts

3.6. Raccordement aux conduites d'air

- Les conduites reliant l'unité à l'extérieur du bâtiment doivent être isolées (épaisseur de l'isolation 50-100 mm) pour éviter la condensation sur les surfaces froides.
- Les conduites d'admission et d'évacuation d'air doivent être équipées de clapets d'arrêt d'air (électriques avec actionneurs) pour protéger l'unité de l'exposition aux conditions climatiques lorsque l'appareil est éteint.
- Afin de minimiser le bruit généré par les unités de traitement de l'air et le transfert du bruit par les conduites dans les zones ventilées, des silencieux doivent être raccordés à l'appareil.
- Les éléments du système de conduites d'air doivent avoir des supports séparés et doivent être montés de manière à ce que leur poids ne soit pas déplacé vers le boîtier de l'appareil.

Les conduites d'air doivent être raccordées à des raccords flexibles de l'unité, à des brides ou à des registres d'air. En fonction de la taille de l'unité de traitement de l'air, des brides L-20 ou L-30 doivent être utilisées. Un joint adhésif spécial doit être fixé aux brides pour assurer l'étanchéité des conduites d'air. Nous recommandons d'installer un joint solide, c'est-à-dire de ne pas le couper en petits morceaux. Veillez à ce que le joint ne recouvre pas les trous de fixation dans les coins et ne soit pas endommagé lors de la fixation des vis. Les brides dans les coins sont fixées avec des vis M8x20 et un profil en C est pressé sur les bords pour relier les brides.

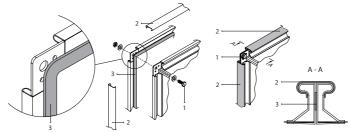


Fig. 26. Exemple de fixation et d'étanchéité d'un raccordement de conduites à brides 1 – vis, 2 – profil en pour le raccordement des brides, 3 – joint adhésif

Pour les conduits rectangulaires dont les côtés d'ouverture sont supérieurs à 500 mm, il est recommandé d'utiliser des connecteurs à pince universels au lieu du profil C pour assurer une meilleure étanchéité à l'air. Les connecteurs à pince doivent être espacés régulièrement à des intervalles ne dépassant pas 265 mm.

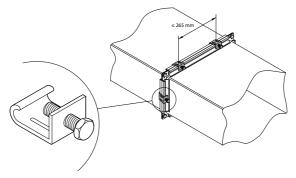


Fig. 27. Exemple de raccordement de gaine à l'aide de connecteurs à pince universels

Les dimensions du profil du clapet de fermeture d'air sont les mêmes que celles de la bride L-20 (pour toutes les tailles de CTA), ainsi lors du montage de pièces supplémentaires (conduits, raccords flexibles, chauffages / refroidisseurs de gaine, silencieux, etc.) directement sur le clapet d'air, il devrait également avoir une connexion à bride L-20 pour une installation plus facile.

3.7. Unités extérieures

Les unités de traitement de l'air RHP PRO destinées à être installées à l'extérieur doivent en outre être protégées contre les effets de l'environnement par l'installation d'un toit de protection et de hottes d'évacuation d'air. Les unités doivent être montées sur un cadre d'installation qui est fixé à une base d'installation. Les appareils de ventilation doivent, si possible, être installés près des murs pour les protéger contre les charges dues au vent. Pour une installation à l'extérieur, les unités avec des tuyaux d'évacuation doivent être protégées en plus contre le gel, par exemple avec des câbles chauffants électriques pour les tuyaux d'évacuation. Si l'unité a été commandée pour une installation à l'extérieur, chaque section de l'unité sera équipée d'un toit de protection. Le toit de protection commandé séparément doit être installé une fois l'unité complètement assemblée.

Les raccordements des unités destinées à être installées à l'extérieur doivent bénéficier d'une étanchéité supplémentaire (produit d'étanchéité non fourni).

- Si l'unité extérieure est arrêtée pendant la saison froide, les conduites d'alimentation et d'extraction d'air (côté intérieur doivent être équipées de registres d'arrêt d'air supplémentaires. Ceux-ci doivent empêcher l'air chaud intérieur de circuler à l'intérieur de l'appareil lorsqu'il est arrêté pour éviter la condensation, qui peut être préjudiciable aux composants électroniques.
- L'installation extérieure d'unités de traitement d'air avec raccordements de conduits verticaux est interdite.

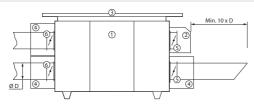
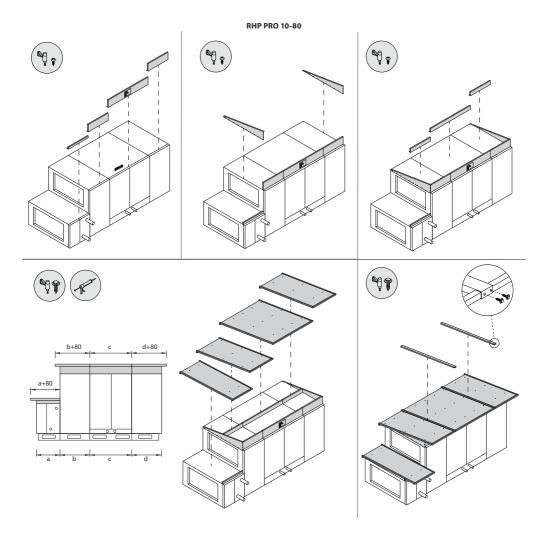



Fig. 28 Accessoires des unités à installer à l'extérieur
1 - centrale de traitement de l'air, 2 - hotte d'admission d'air, 3 - toit,
4 - boîtiers ou couvercles de servo-moteurs de registres d'air, 5 - registres de fermeture d'air,
6 - registres d'air supplémentaires pour la protection de l'unité arrêtée

Les hottes d'admission et d'échappement d'air doivent être installés aussi loin que possible (par exemple, en ajoutant des segments de conduites entre l'unité de traitement de l'air et la hotte), ceci afin d'empêcher l'air d'échappement de retourner vers les admissions d'air.

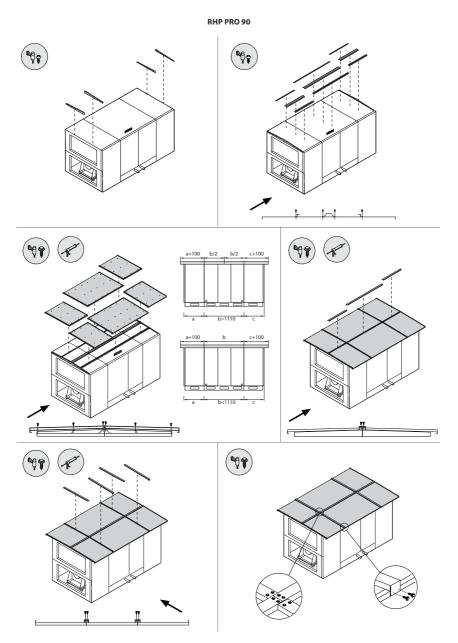


Fig. 29. Installation d'un toit de protection commandé séparément 1

Le nombre de pièces et les mesures peuvent varier en fonction du type d'unité ou des exigences du projet.

4. INSTALLATION ÉLECTRIQUE

Seuls les professionnels qualifiés peuvent effectuer des travaux d'installation électrique conformément aux instructions du fabricant et aux actes juridiques et exigences de sécurité applicables. Avant l'installation de tout composant électrique :

- Assurez-vous que l'appareil est débranché du secteur.
- Si l'unité est restée longtemps dans une pièce non chauffée, assurez-vous qu'il n'y a pas de condensation à l'intérieur et vérifiez que les contacts et les parties électroniques des connecteurs ne sont pas endommagés par l'humidité.
- · Inspectez le câble d'alimentation et les autres câblages pour vérifier si l'isolation est endommagée.
 - Repérez le schéma de câblage de votre unité en fonction du type d'appareil.

4.1. Exigences liées aux branchements électriques

- Branchez l'unité uniquement sur une prise de courant appropriée avec une mise à la terre de protection. La mise à la terre doit être installée conformément aux exigences de la norme EN61557, BS 7671.
- Il est recommandé de connecter l'AHU au secteur via un disjoncteur automatique avec protection contre les fuites de courant 300 mA (type B ou B +).
- Les câbles de commande doivent être installés à au moins 20 cm des câbles électriques pour réduire la possibilité d'interférences électriques.
- Tous les composants électriques externes doivent être connectés en respectant strictement le schéma de câblage de l'unité.
- Ne débranchez pas les connecteurs en tirant sur des fils ou des câbles.

Unités de traitement de l'air conçues pour une tension d'alimentation de 400 V CA¹, 50 Hz, connectées par le biais du disjoncteur principal (QS1 dans les schémas de câblage). Le disjoncteur principal est livré avec un support universel qui permet de le fixer sur le dessus ou le côté de la CTA.

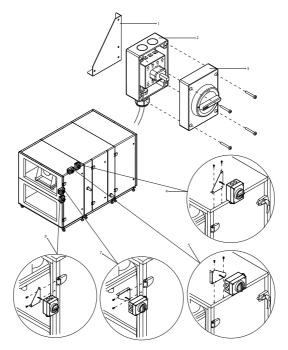
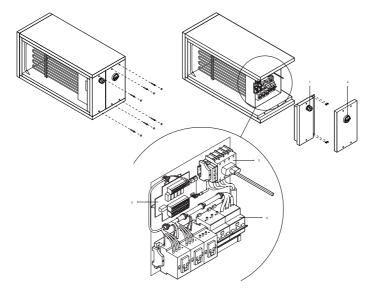


Fig. 30. Disjoncteur principal et ses exemples de montage


1 – support universel, 2 – disjoncteur, 3 – couvercle du disjoncteur, 4 – montage sur le dessus de la CTA, à la verticale,
5 – montage sur le dessus de la CTA, à l'horizontale, 6 – montage sur le côté de la CTA, à l'horizontale

Selon la commande.

Si le support du disjoncteur est utilisé, il doit être monté sur le bord du boîtier de l'unité, sinon les vis autotaraudeuses risquent d'endommager les fils ou les tuyaux qui sont acheminés à l'intérieur.

Les unités équipées d'une section de réchauffeur électrique supplémentaire seront dotées d'un disjoncteur principal séparé à l'intérieur de la section.

Fig. 31. Disjoncteur principal à l'intérieur d'une section de réchauffeur électrique 1 – passe-câble d'entrée, 2 – poignée du disjoncteur principal, 3 – disjoncteur principal,

4 – commutateur automatique, 5 – carte de commande de réchauffeur électrique

Les grandes unités RHP PRO (taille 60 et plus) sont également équipées d'un disjoncteur séparé pour la section de la pompe à chaleur. Le diamètre du câble d'entrée dépend d'un courant maximum spécifié dans l'imprimé des données techniques de l'unité spécifique.

Courant, A	Type de câble :
15	5 × 1,5 mm² (Cu)
21	5 × 2,5 mm² (Cu)
27	5 × 4,0 mm² (Cu)
34	5 × 6,0 mm² (Cu)
50	5 × 10,0 mm ² (Cu)
70	5 × 16,0 mm² (Cu)
85	5 × 25,0 mm² (Cu)

4.2. Raccordement des composants électriques

Tous les dispositifs internes et externes sont connectés à la carte mère du panneau de commande C5 (RG1 dans les schémas de câblage) situé dans le boîtier d'automatisation. Le boîtier d'automatisation est monté sur la partie supérieure de la section de l'échangeur de chaleur.

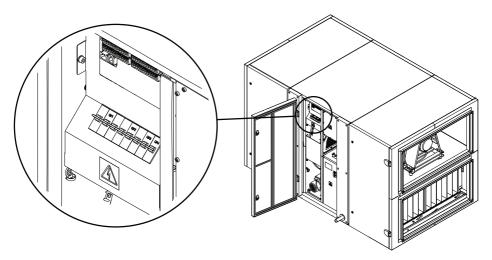


Fig. 32. Emplacement de la boîte d'automatisation

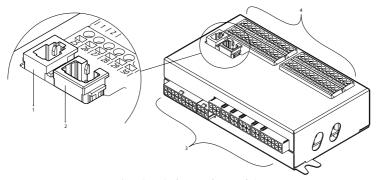


Fig. 33. Carte mère du panneau de commande C5
1 – connexion du panneau de commande, 2 – connexion Intranet ou Internet, 3 – connexion interne des composants,
4 – bornes des composants externes

Les bornes des éléments externes de la carte de contrôleur sont numérotées et ne sont utilisées que pour connecter les composants externes. Ils peuvent rester vides si aucune fonction supplémentaire n'est requise.

				010V	25	1	В		Connexion		
	В9	Capteur d'humidité		~24V	26	2	A	MODBUS RS485		001	PUT
	╝			N	27	3	GND				
8				010V	28	4	IN4	δ	Contrôle externe		
=	88	Sonde de qualité d'	'air	~24V	29	5	IN3	Contrôle externe	Arrêt externe		
교				N	30	6	IN2	lee	Alarme incendie		8
۱ä				010V	31	7	IN1	xten	Contact OVR		ΞI
CONTRIBUTIONS	В7	Capteur de pressio air extrait (VAV)	n	~24V	32	8	С	ne	Commun		낊
S		un oxuun (v/tv)		N	33	9	NTC	Sor	nde de température	B5	CONTRIBUTIONS
				010V	34	10	리	retour d'eau		Ç,	ᅙ
	Capteur de pression soufflage (VAV)		n	~24V	35	11	NTC	So	Sonde de température soufflage		S
				N	36	12	7				
				C	37	13	010V		Contrôle humidité	TG3	
	Servomoteur registre			~24V	38	14	GND	Controle numidite		ಜ	
=	_	registre		N	39	15	010V	V Servomoteur vanne		Π.	
S		Start	ž	NO	40	16	~24V	mélange eau glacée / Contrôle de capacité DX		[G2	Fil
SORTIES		Alarme	Indication	NO	41	17	N				S
골		Commun	9	С	42	18	010V			Ī	SORTIE
ES		DX3/Chauffage		NO	43	19	~24V	Serrvomoteur vanne mélange eau chaude		TG1	<u> </u>
	0	DX2/Refroidir		NO	44	20	N			-	S
	X	DX1/Start		NO	45	21	L	Pompe eau glaçée 230V AC, 1A		co	
		Commun		С	46	22	N				
		Alarme de pompe		DIN	47	23	L	Р	ompe eau glaçée	S	
CONTRI	NOTUR	à eau / bobine		GND	48	24	N		230V AC, 1A	7	

Fig. 34. Bornes de connexion pour les composants externes sur la carte mère C5

La puissance totale de tous les dispositifs externes avec une tension d'alimentation de 24 V ne doit pas dépasser 25 W.

Modbus RS485 (1-3) – connexion par câble de données pour la commande de l'unité à partir d'un système de gestion de bâtiment via le protocole Modbus RTU.

Gestion externe (4-8) – bornes permettant de contrôler des fonctions spécifiques de l'unité via des contacts externes qui sont connectés à une borne commune 8. Il s'agit notamment de thermostats, d'interrupteurs, de détecteurs de mouvement et d'autres dispositifs dont les contacts sont normalement ouverts ou fermés. Les fonctions activées fonctionneront aussi longtemps que ces contacts seront connectés.

- La borne 4 est utilisée pour activer la recirculation (si un registre de recirculation est commandé, commandé par un contact externe) ou
 pour passer du mode chauffage au mode refroidissement lorsqu'un serpentin combiné chauffe-eau/refroidisseur est installé (lorsque les
 bornes sont connectées, l'actionneur de la vanne d'eau et la pompe seront commandés par un signal de refroidissement. Par exemple,
 un thermostat peut être connecté ici pour fermer les bornes lorsque de l'eau froide circule dans le système).
- La fermeture des contacts 5 et 8 arrêtera l'unité.
 - L'alarme incendie nécessite un contact normalement fermé (NC), donc, un cavalier est connecté entre les bornes 6 et 8, au lieu duquel, le système d'incendie du bâtiment peut être connecté. Lorsque le contact est coupé, l'unité s'arrête, les ventilateurs accélèrent (selon l'ordre) et un message d'alarme incendie est affiché.
- La borne 7 active un mode de ventilation « Override » (OVR). Ce mode a la priorité sur les autres fonctions des unités de traitement de l'air et peut être activé même lorsque l'unité est arrêtée (c'est-à-dire, pour démarrer l'unité en fermant les contacts). Les paramètres de la fonction OVR sont définis via le panneau de commande ou l'ordinateur. Cette fonction est active tant que les bornes sont fermées.
 PS (0.10) lergeul'un chauffe ou port installé cette borge cett à conpector une sorteur de température de l'au de reture (NTC 1040) qui

B5 (9–10) – lorsqu'un chauffe-eau est installé, cette borne sert à connecter un capteur de température de l'eau de retour (NTC $10k\Omega$) qui protège contre le gel.

Fig. 35. Sonde de température de retour d'eau en surface

Selon la commande.

Fig. 36. Sonde de température de l'eau de retour avec filetage¹

B1 (11–12) – Borne du capteur température de l'air de soufflage (NTC $10k\Omega$) pour le contrôle de la température de l'air.

Fig. 37. Capteur de température d'air de soufflage

Pour une mesure de température la plus précise possible, le capteur dans une conduite doit être installé après tous les dispositifs de chauffage/refroidissement à une distance équivalente d'au moins deux fois le diamètre de la conduite du serpentin le plus proche.

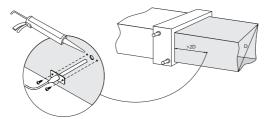


Fig. 38. Installation d'un capteur de température d'air de soufflage

TG3 (13-14) – pour le branchement du signal de commande (0..10 V) d'un humidificateur ou déshumidificateur externe, s'il est activé.

TG2 (15-17) – alimentation électrique (24 V AC) et signal de commande (0..10 V) pour un actionneur de vanne mélangeuse de refroidisseur d'eau. Si une unité DX est installée (commandée par un signal modulé), le signal de commande de l'unité DX est connecté à ces bornes et le refroidissement par eau est désactivé.

TG1 (18-20) – alimentation électrique (24 V AC) et signal de commande (0..10 V) pour un actionneur de vanne mélangeuse de chauffeeau. Si la combinaison chauffe-eau/refroidisseur est utilisée, l'actionneur de la vanne sera commandé par un signal de chauffage ou de refroidissement (selon celui qui est fourni).

S2 (21-22) – tension d'alimentation de 230 V AC pour une pompe de circulation d'eau froide, qui est utilisée avec un serpentin de refroidisseur d'eau externe et qui est activée lorsque le refroidissement est nécessaire. Max 1 A.

\$1 (23-24) – tension d'alimentation de 230 V AC pour une pompe de circulation d'eau chaude, qui est utilisée avec un serpentin de chauffe-eau externe et qui est activée lorsque le refroidissement est nécessaire. Max 1 A.

B8/B9 (25-30) – bornes des capteurs de qualité de l'air et d'humidité, qui sont utilisés pour les fonctions suivantes (voir « Manuel d'utilisation ») :

- Contrôle qualité d'air (AQC).
- Contrôle de recirculation (REC).
- · Fonctionnement sur demande (OOD).
- Contrôle de l'humidité (HUM).

Ces fonctions peuvent être commandées par les capteurs de type suivant (le type de capteur ne peut être modifié que par un représentant de maintenance autorisé) :

- Dioxyde de carbone CO₂ (réglage par défaut) plage de 0 à 2 000 ppm.
- Qualité de l'air COV (composé organique volatil) plage de 0 à 100 %.
- Humidité relative HR plage de 0 à 100 %.
- Température TMP plage entre 0 et 50 °C

B6/B7 (31-36) – lorsqu'une méthode de contrôle du débit d'air VAV est utilisée (voir « Manuel de l'utilisateur »), des capteurs de pression optionnels doivent être installés et raccordés dans les conduites. Suivez les instructions du fabricant pour l'installation des capteurs de pression VAV. De plus, ces bornes sont utilisées pour le contrôle du débit d'air DCV lorsqu'un signal séparé de 0 à 10 V peut être utilisé pour régler l'intensité de la ventilation (voir « Manuel de l'utilisateur »).

Selon la commande.

FG1 (37-39) – bornes utilisées pour connecter les actionneurs des registres d'air. Des bornes sont également dédiées à l'actionneur de volet de dérivation de fumée, lorsque la fonction d'extraction de fumée en option est commandée et que les ventilateurs sont forcés pendant l'alarme incendie. Ces bornes peuvent également être utilisées pour connecter des actionneurs d'alimentation électrique de 24 V CA avec ou sans ressort de rappel.

Indication (40-42) – les bornes sont utilisées lorsqu'un contact normalement ouvert (NO) est nécessaire pour l'indication d'un état de fonctionnement ou d'un défaut.

Contrôle du refroidissement (43-46) – sorties numériques normalement ouvertes (NO) pour contrôler les refroidisseurs/réchauffeurs à expansion directe (DX). L'objectif des sorties diffère selon le type de commande de l'unité DX commandé ou programmé dans le panneau de commande!:

- Commande pas à pas des dispositifs de refroidissement DX de type marche/arrêt chacune des 3 sorties est activée l'une après l'autre, lorsque la puissance de l'étage précédent est insuffisante, après un délai de 5 min.
- Commande pas à pas des dispositifs DX de type marche/arrêt réversible (refroidissement/chauffage) Les sorties DX1 et DX2 sont activées l'une après l'autre, lorsque la puissance de l'étage précédent est insuffisante, après un délai de 5 min. La sortie DX3 est utilisée pour commuter les unités DX entre les modes de refroidissement et de chauffage.
- Si une unité DX est commandée par un signal modulé (0.10 V), les sorties numériques sont utilisées pour démarrer un appareil DX et changer ses modes de fonctionnement: DX1 signal de départ, DX2 refroidissement, DX3 chauffage. Le signal de commande de puissance pour ce type d'unité DX est connecté aux bornes TG2.

Alarme pompe à eau/serpentin (47-48) – ici vous pouvez connecter un signal pour l'indication des défauts de la pompe à eau (si cette fonction est disponible sur la pompe); si la pompe tombe en panne, l'unité de traitement de l'air est arrêtée.

Tous les fils à connecter à la carte principale du panneau de commande doivent être passés par des passe-câbles, en haut de l'unité.

4.3. Installation du panneau de commande

Le panneau de commande doit être installé dans une pièce avec :

- Température ambiante comprise entre 0 et 40 °C
- Humidité relative comprise entre 20 et 80 %
- Protection garantie contre les gouttes d'eau accidentelles.

Le panneau de commande peut être monté dans un boîtier de montage dissimulé ou directement sur le mur (vis fournies avec le panneau). Vous pouvez également utiliser des aimants (sur la surface arrière) pour fixer le panneau à des surfaces métalliques (c'est-à-dire sur la porte de l'unité).

N'utilisez pas de vis d'un autre type ou d'une autre taille que celles qui sont fournies pour le montage du panneau de commande. Des vis incorrectes peuvent endommager une carte de circuit imprimé.

La télécommande est fournie avec un câble de 10 m. Si ce câble est trop court, vous pouvez le remplacer par un câble de $4 \times 0,22$ mm, jusqu'à 150 m de long.

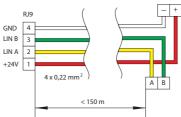


Fig. 39. Schéma de câblage du panneau de commande

Le câble du panneau de commande doit être installé plus loin des autres câbles d'alimentation électrique ou des équipements électriques à haute tension (boîtier électrique, chaudière électrique de chauffage de l'eau, unité de climatisation, etc.) Le câble peut être tiré à travers des ouvertures dans la partie arrière ou inférieure du panneau de commande (suivre les instructions d'installation fournies avec le panneau de commande). Le câble de la carte de commande CS doit être connecté à un emplacement dédié (connecteur RJ9; yoir la figure 33).

Si le dispositif DX n'a pas été prédéfini dans le logiciel du contrôleur, ces sorties seront inactives.

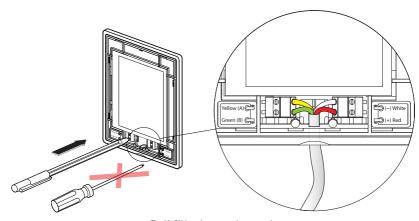


Fig. 40. Câblage du panneau de commande

- N'utilisez pas d'outils tranchants pour brancher les contacts dans le panneau de commande (par exemple, un tournevis). Veuillez utiliser un crayon ou un stylo à bille.
- Ne pas utiliser de manchons (ou de bornes) sur les fils à connecter au panneau de contrôle, car ils peuvent empêcher le câble de se connecter correctement ou endommager les connecteurs du panneau.
- Connectez uniquement le panneau de contrôle entièrement assemblé, avec les couvercles arrière et avant installés, à la carte principale du contrôleur. Si vous installez les couvercles lorsque le panneau de contrôle est sous tension, vous risquez d'endommager les composants électroniques internes.

4.4. Branchement des câbles et des fils entre les sections

Avant de fixer les pièces de l'unité de traitement de l'air, vous devez raccorder les câbles et les fils de connexion des sections. Les connecteurs de câbles sont étiquetés avec des numéros de connecteurs; ne connectez que des connecteurs portant le même numéro. Le nombre de câbles et de connecteurs dans les différentes sections peut varier en fonction des composants installés. Si des fonctions ou des composants externes ne sont pas commandés, il se peut qu'il y ait des connexions non couplées entre les sections. Consultez le schéma de câblage de l'unité spécifique pour voir quelles connexions doivent être utilisées.

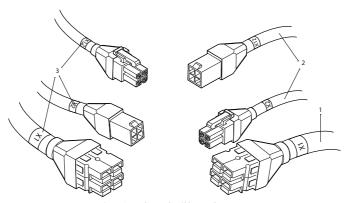


Fig. 41. Raccordement des câbles entre les sections

1 - câble d'alimentation électrique, 2 - câbles de communication entre les cartes de circuits imprimés,

3 - étiquettes avec numéros de connexion

Certains composants (par exemple, les actionneurs de registres, les humidificateurs, etc.) n'ont pas de connecteurs séparés et doivent être connectés à un bornier d'une boîte de ionction (PD dans les schémas de câblage).

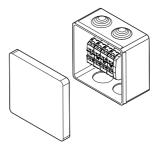


Fig. 42. Boîte de raccordement PD1

Les fils et câbles connectés doivent être inspectés pour s'assurer qu'ils ne se déconnecteront pas accidentellement en raison des vibrations de l'unité ou qu'ils n'entreront pas en contact avec les pièces mobiles de l'unité (ventilateurs, vannes, roue du rotatif). Si nécessaire, utilisez des attaches spéciales pour fixer les fils au boîtier de l'unité.

4.5. Connexion de l'unité au réseau informatique interne ou à Internet

Votre unité de traitement de l'air peut être contrôlée non seulement par un panneau de commande, mais aussi par un ordinateur ou un smartphone. C'est la raison pour laquelle l'unité doit être connectée au réseau informatique interne ou à l'Internet. Dans le cas d'un ordinateur, l'unité est contrôlée via un navigateur Web, et dans le cas d'un smartphone - via l'application Komfovent. Utilisez un câble de type CATS pour connecter votre unité de traitement de l'air au réseau informatique (connexion RJ45; voir fig. 33). La longueur totale du câble entre l'unité et le routeur du réseau ne doit pas dépasser 100 mètres. Par défaut, l'adresse IP de votre unité de traitement de l'air est 192.168.0.50, mais elle peut être modifiée (si nécessaire) en fonction des paramètres du réseau local. L'adresse IP peut être trouvée et modifiée dans le panneau de commande.

Fig. 43. Visualisation et modification de l'adresse IP à l'aide d'un panneau de commande

Une unité de traitement de l'air connectée à un routeur de réseau peut être contrôlée par un ordinateur via une connexion sans fil (Wi-Fi). L'unité peut également être contrôlée sans fil dans un réseau local à l'aide d'un smartphone doté de l'application Komfovent. Une fois l'unité connectée au routeur du réseau, vous devez attribuer une adresse IP libre sur le réseau local.

Lorsque vous connectez votre ordinateur directement à l'unité, ouvrez les paramètres réseau et attribuez manuellement une adresse IP, dont le dernier numéro serait différent de l'adresse IP de l'unité (par exemple, si l'adresse IP de l'unité est 192.168.0.50, attribuez l'adresse 192.168.0.70 à l'ordinateur). Entrez le masque de sous-réseau : 255.255.0.0.

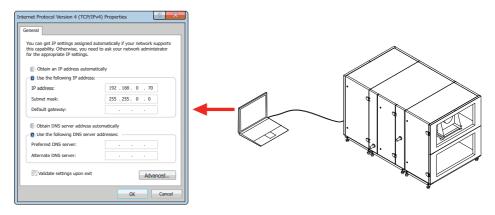
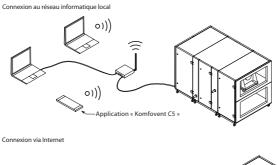



Fig. 44. Paramètres du réseau informatique pour une connexion directe à l'unité

Afin de contrôler votre unité de traitement de l'air sur Internet, connectez-le au routeur du réseau qui a accès à l'internet. Suivez le manuel du routeur pour configurer la redirection de port vers l'adresse IP de l'unité. Selon que vous utiliserez votre ordinateur ou votre martphone avec l'application Komfovent pour contrôler votre unité de traitement de l'air, vous devrez également saisir un numéro de port correspondant au routeur. Pour le contrôle via votre ordinateur, utilisez le port 80, et pour le contrôle via votre smartphone, utilisez le port 502. Une fois qu'un ordinateur ou un smartphone est connecté à l'internet, entrez une adresse IP de routeur externe et définissez le numéro de port de votre navigateur Web ou de l'application Komfovent pour accéder à l'interface utilisateur de l'unité de traitement de l'air (pour plus d'informations sur le contrôle avec un ordinateur ou un smartphone, voir le « Manuel de l'utilisateur »).

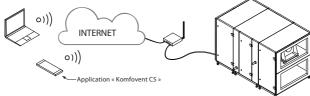


Fig. 45. Exemples de connexion des unités de traitement de l'air à l'Internet ou au réseau local

5. FILTRES

Les filtres à air sont destinés à éliminer la poussière, les bactéries et autres particules fines de l'air de soufflage et extrait. Les unités de traitement de l'air RHP PRO sont équipées de filtres à manches, car ils ont une plus grande surface filtrante que les filtres compacts et nécessiteront un remplacement moins fréquent des filtres. Les filtres sont fabriqués en tissu synthétique et peuvent avoir différentes classes de filtration¹, c'est-à-dire qu'ils sont destinés à éliminer des particules de tailles différentes. En général, les conduites d'air de soufflage sont équipées de filtres de meilleure classe de filtration que les conduites d'air extrait, puisque l'air extérieur nettoyé est fourni aux locaux. Veillez a remplacer les filtres à temps, car les filtres contaminés augmentent la perte de pression de l'unité, réduisent l'efficacité de la purification et augmentent la consommation d'énergie.

L'unité dispose d'une fonction intégrée de surveillance de la contamination des filtres. Elle mesure en permanence la différence de pression en amont et en aval du filtre pour évaluer le niveau de contamination. Si des filtres d'un autre fabricant ou des filtres d'une autre classe de filtration sont utilisés à la place de filtres montés en usine, l'étalonnage des filtres propres doit être effectué avant d'utiliser l'unité de traitement de l'air. Les intervalles de remplacement des filtres dépendent des conditions de pollution de l'environnement ainsi que de la période de l'année. Par exemple, au printemps et en été, les filtres peuvent être contaminés par le pollen, la pubescence ou les insectes, c'est pourquoi les intervalles de remplacement sont plus courts. Remplacez les filtres s'ils sont visiblement sales, même si ce n'est pas encore le moment et qu'un message de changement de filtre n'est pas encore affiché.

Le type de filtre, les dimensions, la classe de filtrage, le nombre et l'emplacement exact sont spécifiés dans l'imprimé des données techniques de l'unité spécifique.

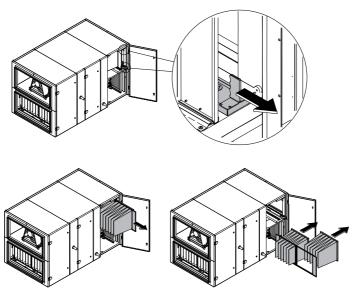


Fig. 46. Dispositif de fixation du filtre

Pour insérer/retirer les filtres, tirez sur les deux poignées en haut et en bas du filtre pour libérer un dispositif de serrage du filtre. Les filtres sont retirés/insérés un par un (le nombre de filtres dépend de la taille de l'unité). Une fois les filtres remplacés/insérés, les poignées sont poussées et le dispositif de serrage du filtre presse les filtres contre les joints.

Lorsque vous insérez les filtres, assurez-vous que leurs manches sont bien droites, que les cadres des filtres sont bien ajustés et que les joints sont intacts.

Selon la commande

6. MISE EN SERVICE ET INSPECTION DE L'UNITÉ

Avant d'allumer l'unité, vérifiez s'il y a des objets étrangers, des débris ou des outils à l'intérieur de l'appareil. Assu-rez-vous que des filtres à air sont installés et que l'évacuation de la condensation est raccordée, remplissez le siphon avec de l'eau. Assurez-vous que les conduites sont exemptes d'obstructions telles que des diffuseurs ou des vannes de réglage complètement fermés ou des grilles d'admission d'air extérieur bloquées. Inspectez l'ensemble de pompe à chaleur. Vérifiez la présence d'humidité dans le système de réfrigération. Un regard avec indicateur de niveau d'humidité est prévu à cet effet. L'indicateur est entièrement vert lorsqu'il n'y a pas d'humidité dans le système et change de couleur (en jaune ou rouge) lorsqu'une humidité est détectée. Vérifiez le niveau approximatif du réfrigérant - le niveau de liquide doit être au moins jusqu'aux ¾ du regard.

- L'utilisation, l'entretien ou la réparation de la centrale de traitement d'air sont interdits aux personnes (y compris les enfants) souffrant de handicaps mentaux, physiques ou sensoriels, ainsi qu'aux personnes sans expérience ni connaissances suffisantes, à moins qu'elles ne soient supervisées et instruites par la personne responsable de leur sécurité conformément à ces instructions.
- Vous ne pouvez démarrer votre unité de traitement de l'air que lorsqu'elle est entièrement installée, que les gaines et les éléments électriques externes sont connectés. Ne démarrez pas l'unité sans avoir raccordé les conduites d'air. Cela peut fausser les mesures de volume d'air requises pour un fonctionnement stable des ventilateurs.
- N'utilisez pas l'unité avec une alimentation électrique temporaire, car une alimentation instable peut endommager les composants électroniques.

Voir le site Web de KOMFOVENT pour les manuels d'utilisation.

L'unité est commandée par une télécommande ou un ordinateur. L'unité est fournie avec les modes de fonctionnement suivants qui peuvent être utilisés immédiatement après l'installation ou différents réglages de ventilation peuvent être sélectionnés.

- COMFORT 1 intensité de ventilation maximale (100 %), température de l'air souhaitée 21 °C.
- COMFORT 2 intensité de ventilation moyenne (50 %), température de l'air souhaitée 21 °C.
- ECONOMY 1 faible intensité de ventilation (33 %), température de l'air souhaitée 20 °C.
- ECONOMY 1 Taible intensité de ventilation (33 %), température de l'air souhaitée 20 °C.
 ECONOMY 2 intensité de ventilation minimale (20 %), température de l'air souhaitée 19 °C.
- SPECIAL intensité de ventilation maximale (100 %), température de l'air souhaitée 21 °C.
- Ce mode peut également être utilisé pour désactiver le chauffage/refroidissement et d'autres fonctions.

6.1. Panneau de commande C5.11

L'unité de traitement de l'air peut être fournie avec un panneau de commande C5.1. C5.1 est un panneau de commande avec écran tactile coloré pour la commande à distance de votre unité de traitement de l'air. Ce panneau de commande est conçu pour indiquer et modifier divers fonctions et réglages de l'unité.

Fig. 47. Panneau de commande

Commandé séparément.

Si l'appareil est branché sur le secteur, le panneau de commande affiche un écran d'accueil ou un économiseur d'écran que vous pouvez éteindre d'un seul geste.

Pour démarrer l'unité de traitement de l'air ou changer un mode de ventilation :

Pendant la première minute de démarrage de l'unité, l'automatisation de l'appareil vérifie les réglages, les composants d'automatisation et ouvre les registres d'air. Plus tard, un signal est envoyé aux ventilateurs et à un échangeur de chaleur, et l'unité commence à fonctionner dans un mode de ventilation s'électionné.

Lors de la première mise en marche de votre unité de traitement de l'air, vous devrez effectuer l'étalonnage d'un évaporateur HP¹ (s'il n'a pas été effectué lors de l'installation). Cet étalonnage est nécessaire au bon fonctionnement de la fonction de prévention du gel.

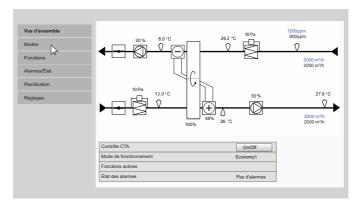
Pendant l'étalonnage, l'unité fonctionnera pendant 10 minutes en modifiant la vitesse du ventilateur et mesurera la pression à l'intérieur de l'appareil. Par conséquent, n'ouvrez pas la porte de l'appareil, n'ajustez pas le système de conduits et ne modifiez pas les paramètres à ce moment-là. Pour arrêter le calibrage, éteignez l'unité à l'aide d'une télécommande ou via le menu Vue d'ensemble.

Pour modifier les paramètres du mode de ventilation : sélectionnez un mode souhaité et réglez un volume d'air ou une température souhaitée à l'aide des flèches.

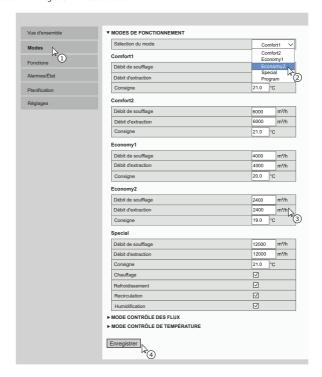
Seulement pour les CTA avec une carte électronique de contrôle TRV.

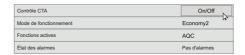
Pour quitter l'unité de traitement de l'air et revenir à un écran d'accueil :

6.2. Démarrage de l'unité via un ordinateur


Si l'unité a été commandée sans panneau de commande ou si celui-ci n'est pas utilisé, vous pouvez la démarrer avec votre ordinateur. Dans ce cas, l'unité est commandée via un navigateur Web. Connectez votre ordinateur directement à l'unité de traitement de l'air ou au même réseau informatique que celui décrit au chapitre 4.5. Exécutez le navigateur Internet sur l'ordinateur et désactivez l'utilisation de tous les serveurs proxy qui peuvent bloquer la connexion dans les paramètres. Dans la barre d'adresse du navigateur Web, entrez l'adresse IP de l'unité:

Connectez-vous à l'interface du panneau de commande C5 dans une fenêtre qui s'ouvre : entrez le nom d'utilisateur *user*, le mot de passe *user* le t appuyez sur CONNECTER.


Si votre tentative de connexion est réussie, la fenêtre « Vue d'ensemble » s'ouvre.


Si le mot de passe a été modifié, utilisez le mot de passe modifié.

Pour démarrer l'unité et modifier les réglages du mode de ventilation :

- 1. Appuyez sur le bouton « Modes ».
- 2. Sélectionnez le mode de ventilation souhaité dans la liste.
- 3. Entrez le débit d'air et la température souhaités dans les paramètres du mode sélectionné.
- 4. Appuyez sur le bouton « Enregistrer » au bas de l'écran.

Pour démarrer ou arrêter l'appareil, appuyez sur le bouton marche/arrêt dans la fenêtre « Aperçu ».

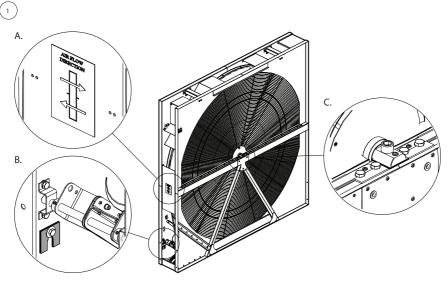
6.3. Calibrage des filtres propres

L'automatisation du contrôle RHP PRO surveille en permanence la contamination des filtres. Nous recommandons d'effectuer un premier calibrage des filtres propres avant la mise en service de l'unité. Pendant le calibrage, l'unité fonctionnera à une vitesse maximale pendant quelques minutes, mesurera la différence de pression en amont et en aval du filtre et réglera automatiquement la classe de filtration du filtre. Calibrage des filtres propres avec le panneau de commande:

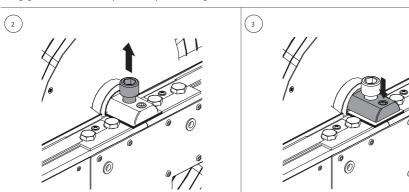
Calibrage des filtres avec un ordinateur : Sélectionnez le point « Avertissements/États » :

Si les filtres commandés avec l'unité sont utilisés (même fabricant et même classe de filtration), le calibrage des filtres propres n'est pas nécessaire.

6.4. Inspection rapide


La première fois que vous démarrez votre unité, assurez-vous que :

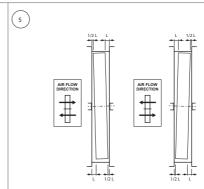
Le panneau de commande fonctionne, répond aux entrées tactiles, aucun message d'erreur ne s'affiche Tous les filtres d'air sont installés Registrez d'air entièrement ouverts Il n'y a pas de bruit ou de vibrations inhabituels Le changement des modes de ventilation modifie la vitesse du ventilateur L'appareil est étanche à bair, sans écarts ni fuites d'air Les dispositifs de chauffage/refroidissement fonctionnent Les appareils externes connectés fonctionnent La condensation s'écoule facilement de l'unité et la tuyauterie de drainage est étanche Vérifiez l'absence de fuites dans le système de tuyauterie de la pompe à chaleur. Vérifiez qu'il n'y a pas d'humidité dans le système de réfrigération. Le compresseur de la pompe à chaleur fonctionne correctement, sans bruits ni vibrations parasites. Étalonnage de l'échangeur de chaleur HP effectué (Uniquement pour les unités HP)
Registrez d'air entièrement ouverts Il n'y a pas de bruit ou de vibrations inhabituels Le changement des modes de ventilation modifie la vitesse du ventilateur Lappareil est étanche à bair, sans écarts ni fuites dair Les dispositifs de chauffage/refroidissement fonctionnent Les appareils externes connectés fonctionnent La condensation s'écoule facilement de l'unité et la tuyauterie de drainage est étanche Vérifiez l'absence de fuites dans le système de tuyauterie de la pompe à chaleur. Vérifiez qu'il n'y a pas d'humidité dans le système de réfrigération. Le compresseur de la pompe à chaleur fonctionne correctement, sans bruits ni vibrations parasites.
Il n'y a pas de bruit ou de vibrations inhabituels Le changement des modes de ventilation modifie la vitesse du ventilateur Lappareil est étanche à bair, sans écarts ni fuites chair Les dispositifs de chauffage/refroidissement fonctionnent Les appareils externes connectés fonctionnent La condensation s'écoule facilement de l'unité et la tuyauterie de drainage est étanche Vérifiez l'absence de fuites dans le système de tuyauterie de la pompe à chaleur. Vérifiez qu'il n'y a pas d'humidité dans le système de réfrigération. Le compresseur de la pompe à chaleur fonctionne correctement, sans bruits ni vibrations parasites.
Le changement des modes de ventilation modifie la vitesse du ventilateur Lappareil est étanche à bair, sans écarts ni fuites dair Les dispositifs de chauffage/refroidissement fonctionnent Les appareils externes connectés fonctionnent La condensation s'écoule facilement de l'unité et la tuyauterie de drainage est étanche Vérifiez l'absence de fuites dans le système de tuyauterie de la pompe à chaleur. Vérifiez qu'il n'y a pas d'humidité dans le système de réfrigération. Le compresseur de la pompe à chaleur fonctionne correctement, sans bruits ni vibrations parasites.
Les dispositifs de chauffage/refroidissement fonctionnent Les appareils externes connectés fonctionnent La condensation s'écoule facilement de l'unité et la tuyauterie de drainage est étanche Vérifiez l'absence de fuites dans le système de tuyauterie de la pompe à chaleur. Vérifiez qu'il n'y a pas d'humidité dans le système de réfrigération. Le compresseur de la pompe à chaleur fonctionne correctement, sans bruits ni vibrations parasites.
Les dispositifs de chauffage/refroidissement fonctionnent Le appareils externes connectés fonctionnent La condensation s'écoule facilement de l'unité et la tuyauterie de drainage est étanche Vérifiez l'absence de fuites dans le système de tuyauterie de la pompe à chaleur. Vérifiez qu'il n'y a pas d'humidité dans le système de réfrigération. Le compresseur de la pompe à chaleur fonctionne correctement, sans bruits ni vibrations parasites.
Les appareils externes connectés fonctionnent La condensation s'écoule facilement de l'unité et la tuyauterie de drainage est étanche Vérifiez l'absence de fuites dans le système de tuyauterie de la pompe à chaleur. Vérifiez qu'il n'y a pas d'humidité dans le système de réfrigération. Le compresseur de la pompe à chaleur fonctionne correctement, sans bruits ni vibrations parasites.
La condensation s'écoule facilement de l'unité et la tuyauterie de drainage est étanche Vérifiez l'absence de fuites dans le système de tuyauterie de la pompe à chaleur. Vérifiez qu'il n'y a pas d'humidité dans le système de réfrigération. Le compresseur de la pompe à chaleur fonctionne correctement, sans bruits ni vibrations parasites.
étanche Vérifiez l'absence de fuites dans le système de tuyauterie de la pompe à chaleur. Vérifiez qu'il n'y a pas d'humidité dans le système de réfrigération. Le compresseur de la pompe à chaleur fonctionne correctement, sans bruits ni vibrations parasites.
Vérifiez qu'il n'y a pas d'humidité dans le système de réfrigération. Le compresseur de la pompe à chaleur fonctionne correctement, sans bruits ni vibrations parasites.
Le compresseur de la pompe à chaleur fonctionne correctement, sans bruits ni vibrations parasites.
vibrations parasites.
Étalonnage de l'échangeur de chaleur HP effectué (Uniquement pour les unités HP)
Autres commentaires :
Installateur
Entreprise
N° de téléphone
Date
Signature



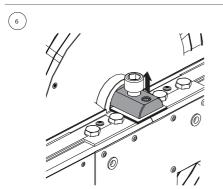
ANNEXE N° 1. RÉGLAGE DE LA ROUE DE L'ÉCHANGEUR DE CHALEUR ROTATIF

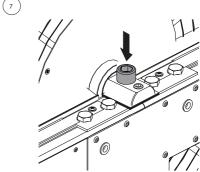
Dans les unités RHP 80 et les unités plus grandes, un échangeur de chaleur rotatif de grand diamètre est utilisé. Étant donné que, pendant le fonctionnement, le débit d'air pousse constamment la roue du rotor, en raison de ses dimensions, sur un côté, elle peut finir par se déformer, ce qui entraîne une usure plus rapide des balais d'étanchéité du rotor et des roulements de l'axe, voire un blocage au bout d'un certain temps. Pour prévenir ce phénomène, vérifiez et, si nécessaire, ajustez la position de la roue rotative par rapport au logement de la section avant de connecter toutes les sections de la CTA. Ceci est particulièrement important si le socle de montage n'est pas complètement de niveau et que les sections de l'appareil ne peuvent pas être parfaitement mises à niveau à l'aide de pieds réglables (voir la section « Exigences relatives à l'emplacement de montage, socle de montage »). Il est également recommandé de vérifier périodiquement la position de la roue rotative, au moins une fois par an.

Sur le boîtier de l'échangeur de chaleur rotatif, vous trouverez un autocollant A indiquant la direction des débits d'air dans l'unité. Il permet de déterminer le sens d'inclinaison de la roue rotative (voir étape 5). Le point de réglage de l'inclinaison de la roue C est accessible depuis le côté ou depuis une section adjacente (si les sections de l'unité sont reliées entre elles). Dans la section du rotor, vous trouverez également des plaques de réglage supplémentaires B, qui peuvent être utilisées si les plaques de réglage installées en usine ne sont pas suffisantes pour obtenir l'angle d'inclinaison correct.



Desserrez la vis de fixation. Dévissez-la de l'arbre d'environ 5 mm.


Vissez la vis de réglage. Cela fera basculer l'axe de la roue et libérera les plaques de réglage.


Retirez ou ajoutez les plaques de réglage (en fonction du côté où la roue doit être

Inclinez l'axe de l'échangeur de chaleur de manière que la roue rotative soit légèrement inclinée dans le sens contraire du débit d'air. Si la roue ne peut pas être réglée correctement en utilisant le point de réglage d'un seul côté, suivez les étapes 2 à 4 sur l'autre côté du rotor.

Après avoir réglé l'inclinaison de la roue, desserrez la vis de réglage de manière à ce que l'arbre du rotor s'appuie fermement sur les plaques de réglage.

Serrez la vis de fixation.

SERVICE AND SUPPORT

LITHUANIA

UAB KOMFOVENT

Phone: +370 5 200 8000 service@komfovent.com www.komfovent.com

FINLAND

Komfovent Oy

Muuntotie 1 C1 FI-01 510 Vantaa, Finland Phone: +358 20 730 6190 toimisto@komfovent.com www.komfovent.com

GERMANY

Komfovent GmbH

Konrad-Zuse-Str. 2a. 42551 Velbert, Deutschland Phone: +49 0 2051 6051180 info@komfovent.de www.komfovent.de

LATVIA

SIA Komfovent

Bukaišu iela 1, LV-1004 Riga, Latvia Phone: +371 24 66 4433 info.lv@komfovent.com www.komfovent.com

SWEDEN

Komfovent AB

Ögärdesvägen 12A 433 30 Partille, Sverige Phone: +46 31 487 752 info se@komfovent.com www.komfovent.se

UNITED KINGDOM

Komfovent Ltd

Unit C1 The Waterfront Newburn Riverside, Newcastle upon Tyne NE15 8NZ, UK

Phone: 0191 429 4503 info uk@komfovent.com www.komfovent.com

PARTNERS

GI IA/6

D) /T D= ::+:= = ::=

--

AT	J. PICHLER Gesellschaft m. b. H.	www.pichlerluft.at
BE	Ventilair group	www.ventilairgroup.com
	ACB Airconditioning	www.acbairco.be

CZ	REKUVENT s.r.o.	www.rekuvent.cz
~~	ILLICOVEINI 3.1.O.	W W W.I EKU VEIIL.CZ

CH	WESCO AG	www.wesco.ch
	SUDCLIMATAIR SA	www.sudclimatair.ch
	CLIMAIR GmbH	www.climair.ch

אט	Widilu A/3	,	www.oeianu.uk

EE	BVT Partners	www.bvtpartners.ee

FR ATIB www	v.atib.fr
-------------	-----------

HR Microclima	www.microc	lima.hr
---------------	------------	---------

HU	AIRVENT Légtechnikai Zrt.	www.airvent.hu
	Gevent Magyarország Kft.	www.gevent.hu
	Merkapt	www.merkapt.hu

IE	Lindab	www.lindab.ie	e

ID	Fantech Ventilation Ltd	www.fantech.ie
IK	Fantech Ventilation Ltd	www.tantechie

IS	Blikk & Tækniþjónustan ehf	www.bogt.is
	Hitataekni ehf	www.hitataekni.is

IT	ICARIA	www.icaria.srl
----	--------	----------------

NL	Ventilair group	www.ventilairgroup.com
	DECIPOL-Vortvent	www.vortvent.nl
	CLIMA DIRECT BV	www.climadirect.com
	ForClima BV	www.forclima.nl

NO	Ventilution AS	www.ventilution.no
	Ventistål AS	www.ventistal.no

Thermo Control AS	www.thermocontrol.no

PL	ventia sp. z o.o.	www.ventia.pi
----	-------------------	---------------

SE NORDISK VENTILATOR AB WWW.NORDISK VENTILATOR.SE	SE	Nordisk Ventilator AB	www.nordiskventilator.se
--	----	-----------------------	--------------------------

SI	Agregat d.o.o	www.agregat.si

SK TZB produkt, s.r.o. www.tzbprodukt.sk

UA TD VECON LLC www.vecon.ua

www.komfovent.com 2024-03